Gofod tri dimensiwn



Mewn Mathemateg, mae gofod tri dimensiwn ('gofod-3', neu 'gofod 3-ddimensiwn') yn lleoliad geometrig lle nodir safle rhyw elfen (e.e. pwynt neu groesbwynt) gan dri gwerth a elwir yn "baramedrau"; dyma'r diffiniad anffurfiol.
Caiff ei gynrychioli'n gyffredin gan y symbol Nodyn:Math.
Mewn ffiseg a mathemateg, gellir deall dilyniant o rifau a elwir yn Nodyn:Math fel lleoliad mewn gofod Nodyn:Math-ddimensiwn. Pan fo Nodyn:Math, gelwir y set o bob lleoliad o'r un fath yn "ofod Ewclidaidd tri dimensiwn". Mae hyn yn gweithredu fel model tri pharamedr o'r bydysawd ffisegol (hynny yw, y rhan ofodol, heb ystyried amser) lle mae pob mater sy'n hysbys yn bodoli. Ond, un enghraifft yn unig yw hwn o nifer helaeth o ofodau mewn tri dimensiwn a elwir yn "3-maniffold". Yma, pan fo tri gwerth yn cyfeirio at fesuriadau gwahanol, mewn cyfeiriadau gwahanol (h.y. cyfesurynnau), yna gellir dewis unrhyw un o'r tri chyfeiriad, cyn belled nad yw'r fectorau yn y cyfeiriadau hyn yn gorwedd yn y plân 2-ofod. Ymhellach, yn yr achos yma, gall y tri gwerth yma gael eu labelu gan unrhyw gyfuniad o'r tri term: lled, hyd ac uchder.
Geometreg Ewclidaidd
Y system gyfesurynnol
Mewn mathemateg, mae geometreg ddadansoddol (a elwir hefyd yn "geometreg Cartesaidd") yn disgrifio pob pwynt mewn gofod tri dimensiwn trwy dri chyfesuryn. Rhoddir tair echelin gyfesurynnol, gyda phob un yn berpendicwlar i'r ddau arall ar y tarddiad, sef y pwynt lle y maent yn croesi. Fe'u labelir fel arfer yn x, y, a z. O ran yr echeliniau hyn, mae lleoliad unrhyw bwynt o fewn y gofod tri dimensiwn yn cael ei roi gan driawd trefnedig (ordered triple) o rifau real, gyda phob rhif sy'n rhoi pellter y pwynt hwnnw o'r tarddiad, wedi'i fesur ar hyd yr echelin a roddir, sy'n hafal i bellter y pwynt hwnnw o'r plân a bennir gan y ddau echelin arall.[1]
Ceir dulliau poblogaidd eraill o ddisgrifio lleoliad pwynt mewn gofod tri dimensiwn, gan gynnwys 'cydlynu silindraidd' a 'chyfesurynnau sfferig]]; mewn gwirionedd, ceir nifer diddiwedd o ddulliau posibl.
Llinellau a planau
Mae dau bwynt gwahanol bob amser yn pennu llinell (syth). Mae tri phwynt gwahanol naill ai'n gyflinellol (collinear) neu'n pennu y plân unigryw. Gall pedwar pwynt gwahanol fod naill ai'n gyflinellol, yn gymhlan (coplanar) neu'n pennu ar y gofod cyfan.
Sfferau a pheli

Mae sffêr mewn gofod-3 (a elwir hefyd yn "2-sffêr" oherwydd ei fod yn wrthrych 2-ddimensiwn) yn cynnwys y set o bob pwynt mewn gofod-3 ar bellter sefydlog Nodyn:Math o bwynt canolog Nodyn:Mvar. Gelwir y solet a amgylchynir gan y sffer yn "bêl" (neu, i fod yn fanwl gywir, yn "3-pêl"). Rhoddir cyfaint y bêl gan
- .
Mae math arall o sffêr (sy'n codi o 4-pêl ac sydd ag arwynebedd tri dimeensiwn) yw'r 3-sffêr, a'i bwyntiau sy'n gytbell o dardd y gofod Ewclidaidd Nodyn:Math. Os oes cyfesurynnau Nodyn:Math gan bwynt yna mae Nodyn:Math yn nodweddu'r pwyntiau hynny ar y sfer-3, wedi'i ganoli ar ei dardd.[2]
Polytopau
Mewn tri dimensiwn, ceir naw naw polytop rheolaidd: y 5 amgrwm a'r 4 nad ydynt yn amgrwm (sef y polytopau Kepler-Poinsot).
| Class | Solidau platonig | Polyhedra Kepler-Poinsot | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Cymesuredd | Td | Oh | Ih | ||||||
| Grŵp Coxeter | A3, [3,3] | B3, [4,3] | H3, [5,3] | ||||||
| Trefn | 24 | 48 | 120 | ||||||
| Polyhedron Rheolaidd |
{3,3} |
{4,3} |
{3,4} |
{5,3} |
{3,5} |
{5/2,5} |
{5,5/2} |
{5/2,3} |
{3,5/2} |