Digwyddiad (theori tebygolrwydd)

Oddi ar testwiki
Fersiwn a roddwyd ar gadw am 09:23, 3 Rhagfyr 2021 gan imported>Llywelyn2000
(gwahan) ← Fersiwn hŷn | Fersiwn diweddaraf (gwahan) | Fersiwn diweddarach → (gwahan)
Neidio i'r panel llywio Neidio i'r bar chwilio

Nodyn:Pethau Mewn theori tebygolrwydd, mae digwyddiad yn set o ganlyniadau arbrawf (is -set o'r gofod sampl) y rhoddir tebygolrwydd iddo.[1] Gall un canlyniad fod yn elfen o lawer o wahanol ddigwyddiadau,[2] ac fel rheol nid yw gwahanol ddigwyddiadau mewn arbrawf yr un mor debygol, oherwydd gallant gynnwys grwpiau gwahanol iawn o ganlyniadau.[3]

Gelwir digwyddiad sy'n cynnwys un canlyniad yn unig yn ddigwyddiad elfennol neu'n ddigwyddiad atomig; hynny yw, set sengl (neu singleton) ydyw. Dywedir i ddigwyddiad S ddigwydd os yw S yn cynnwys y canlyniad x o'r arbrawf (neu'r prawf) (hynny yw, os ydy xS ). Y tebygolrwydd y bydd digwyddiad S yn digwydd yw'r tebygolrwydd bod S yn cynnwys y canlyniad x o arbrawf (hynny yw, mae'n bur debygol fod xS ). Mae digwyddiad yn diffinio digwyddiad cyflenwol, sef y set gyflenwol (y siawns i'r digwyddiad beidio a digwydd), a gyda'i gilydd mae'r rhain yn diffinio prawf Bernoulli: a ddigwyddodd y digwyddiad ai peidio?

Enghraifft syml

Os ydym yn cydosod pecyn o 52 o gardiau chwarae heb unrhyw jocyrs, ac yn tynnu cerdyn sengl o'r pecyn, yna mae'r gofod sampl yn set 52-elfen, gan fod pob cerdyn yn ganlyniad posibl. Digwyddiad, fodd bynnag, yw unrhyw is-set o'r gofod sampl, gan gynnwys unrhyw set sengl (digwyddiad elfennol), y set wag (digwyddiad amhosibl, gyda thebygolrwydd o sero) a'r gofod sampl ei hun (digwyddiad penodol, gyda thebygolrwydd o un). Mae digwyddiadau eraill yn is-setiau cywir o'r gofod sampl sy'n cynnwys sawl elfen. Felly, er enghraifft, mae digwyddiadau posib yn cynnwys:

Diagram Euler o ddigwyddiad. B yw'r gofod sampl ac A yw'r ddigwyddiad. Yn ôl cymhareb eu harwynebedd, tebygolrwydd A yw tua 0.4.
  • "Coch a du ar yr un pryd heb fod yn jocyr" (0 elfen),
  • "5 Calon" (1 elfen),
  • "Brenin" (4 elfen),
  • "Cerdyn Uwch" (face cards) (12 elfen),
  • "Rhaw" (13 elfen),
  • "Cerdyn Uwch neu siwt goch" (32 elfen),
  • "Cerdyn" (52 elfen).

Gan mai setiau yw pob digwyddiad, fe'u hysgrifennir fel setiau fel arfer (er enghraifft, {1, 2, 3}), a'u cynrychioli'n graffig gan ddefnyddio diagramau Venn. Yn y sefyllfa lle mae pob canlyniad yn y gofod sampl, mae Ω yr un mor debygol, y tebygolrwydd P o ddigwyddiad A yw'r fformiwla canlynol :P(A)=|A||Ω| (neu: Pr(A)=|A||Ω|)

Gellir cymhwyso'r rheol hon yn rhwydd i bob un o'r digwyddiadau enghreifftiol uchod.

Nodyn ar y nodiant

Er bod digwyddiadau yn is-setiau o rywfaint o ofod Ω, fe'u hysgrifennir yn aml fel rhagfynegiadau neu ddangosyddion sy'n cynnwys hapnewidynnau. Er enghraifft, os yw X yn hapnewidyn real a ddiffinnir ar y gofod sampl Ω, gellir ysgrifennu'r digwyddiad{ωΩu<X(ω)v}yn syml, felu<Xv.Mae hyn yn arbennig o gyffredin mewn fformwlâu ar gyfer tebygolrwydd, felPr(u<Xv)=F(v)F(u).Mae'r set u<Xv yn enghraifft o ddelwedd wrthdro (inverse image) dan y mapio X oherwydd ωX1((u,v]) os a dim ond os u<X(ω)v.


Cyfeiriadau

Nodyn:Cyfeiriadau

Nodyn:Rheoli awdurdod